Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro

نویسندگان

  • Tirth R. Ghimire
  • Robert A. Benson
  • Paul Garside
  • James M. Brewer
چکیده

Aluminium adjuvants (alum) have been the only widely approved adjuvants for use in human vaccines since the 1920s, however, the mechanism of action of these adjuvants remains elusive. Due to increasing demand for novel adjuvants, a clearer understanding of the mechanisms that allow these important agents to affect adaptive immune responses will make a significant contribution to the rational design of future vaccines. Using a novel approach to tracking antigen and antigen presentation, we demonstrate that alum induces higher antigen accumulation and increased antigen presentation by dendritic cells (DCs) in vitro. Antigen accumulation was 100-fold higher and antigen presentation 10-fold higher following alum treatment when compared with soluble protein alone. We also observed that alum causes an initial reduction in presentation compared with soluble antigen, but eventually increases the magnitude and duration of antigen presentation. This was associated with reduced protein degradation in DCs following alum treatment. These studies demonstrate the dynamic alterations in antigen processing and presentation induced by alum that underlie enhanced DC function in response to this adjuvant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liposome and polymer-based nanomaterials for vaccine applications

Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...

متن کامل

Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells.

Many vaccines include aluminum salts (alum) as adjuvants despite little knowledge of alum's functions. Host DNA rapidly coats injected alum. Here, we further investigated the mechanism of alum and DNA's adjuvant function. Our data show that DNase coinjection reduces CD4 T-cell priming by i.m. injected antigen + alum. This effect is partially replicated in mice lacking stimulator of IFN genes, a...

متن کامل

Antigen depot is not required for alum adjuvanticity

Alum adjuvants have been in continuous clinical use for more than 80 yr. While the prevailing theory has been that depot formation and the associated slow release of antigen and/or inflammation are responsible for alum enhancement of antigen presentation and subsequent T- and B-cell responses, this has never been formally proven. To examine antigen persistence, we used the chimeric fluorescent ...

متن کامل

The role of nanoliposome bilayer composition containing soluble leishmania antigen on maturation and activation of dendritic cells

Objective(s): Dendritic cells (DCs) play a critical role in activation of T cell responses. Induction of type1 T helper (Th1) immune response is essential to generate protective immunity against cutaneous leishmaniasis. The intrinsic tendency of liposomes to have interaction with antigen-presenting cells is the main rationale to utilize liposomes as antigen carriers. In the present study, the e...

متن کامل

Visualizing Particulate Antigen Targeting to Dendritic Cells (DCs) In vitro

In this study, Ealpha green fluorescence protein (EαGFP)/YAe system was used to visualize antigen uptake and presentation by BMDCs [12,14] (Figure 1). This system allows assessment of antigen uptake/degradation and, in combination with the YAe antibody antigen presentation in situ [12,14,15]. When this antigen is internalized by DCs, EαGFP is degraded and the Eα peptide is presented by IAbMHCII...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2012